e _ SIGGRAPH2008

‘,

DirectX 11 t

Compute Shader

-

Chas. Boyd

Architect
Windows Desktop and Graphics Technology

Microsoft

QOutline

A Compute Shader Objectives
| DirectX
| Data-Parallel Processing
| Target Applications
| Design
A Compute Shader Details
I Syntax and Features

t " SIGGRAPH2008
-

DirectX

A
A
A

DirectX APl set shipping since 1995

Direct3D Is popular graphics AP

Historically for games, but broad

for PCs

ening Iin scope

I Windows OS components, media apps, etc.

A GPU performance has grown at faster rate than

CPU graphic performance has

A New customers want that performance

t " SIGGRAPH2008
-

Data Parallel Processing

A A programming model and hardware
architecture

A Assign processor resources on a per-data-
element basis

A Scales very well with core-count growth
I Applications written in DirectX3 for 1 ALU still run
on 800 core processors

t " SIGGRAPH2008
-

Introducing: the Compute Shader

A A new processing model for GPUs
| Datai parallel programming for mass market client apps

A Integrated with Direct3D
I For efficient inter-op with graphics in client scenarios

A Supports more general constructs than before
I Cross thread data sharing
I Un-ordered access I/O operations

A Enables more general data structures
| Irregular arrays, trees, etc.

A Enables more general algorithms

| Far beyond shading t‘ " SIGGRAPH2008

Target: Interactive Graphics/Games

A lmage/Post processing:
I Image Reduction, Histogram, Convolution, FFT

A Effect physics

| Particles, smoke, water, cloth, etc.
A Advanced renderers:

| A-Buffer/OIT, Reyes, Ray-tracing, radiosity, etc.
A Gameplay physics, Al, etc.

A Production pipelines t‘ SIGGRAPH2008

Target: Media Processing

AVideo:

| Transcode, superResolution, etc.
A Photo/imaging:
I Consumer applications

A Non-client scenarios:
I HPC, server workloads, etc.

t " SIGGRAPH2008
-

Optimized for Client Scenarios

A Simpler setup syntax
| Balance between power and complexity

A Real-time rendering of results

I Working to reduce cost of transition from compute
mode to graphics mode

A Better integration with media data types:
I Pixels, samples, text, vs only floats

A Need consistency between implementations
| Both across vendors and over time/generations

t " SIGGRAPH2008
-

Component Relationships

Applications

Domain | Domain
Libraries L, Languages
Py -

Compute Languages

Processors

Media playback or processing,
media Ul, recognition, etc.

Accelerator, Brook+, Rapidmind, Ct

MKL, ACML, cuFFT, D3DX, etc.

DirectX11 Compute, CUDA, CAL,
OpenCL, LRB Native, etc.

CPU, GPU, Larrabee
nVidia, Intel, AMD, S3, etc.

t " SIGGRAPH2008

-

Compute Shader Features

A Predictable Thread Invocation
| Regqular arrays of threads: 1-D, 2-D, 3-D

I Dondt have to O6draw a Qgu:

A Shared registers between threads

| Reduces register pressure
| Can eliminate redundant compute and i/o

A Scattered Writes
| Can read/write arbitrary data structures
| Enables new classes of algorithms

| Integrates with Direct3D resources t 3

-

SIGGRAPH2008 1

1

Integrated with Direct3D

A Fully supports all Direct3D resources

A Targets graphics/media data types

A Evo
A Gra

data structures via ad

ution of DirectX H

nhics pipeline upd

LSL
ated to emit general

dressable writes

AWhich can then be manipulated by compute
shader

AAnd then rendered by Direct3D again

t " SIGGRAPH2008
-

Integration with Graphics Pipeline

Input Assembler

Vertex Shader

Geometry Shader

Rasterizer

Pixel Shader

Output Merger

Scene Image

A Render scene
A Write out scene image

A Use Compute for image
post-processing

A Output final image

Final Image

® SIGGRAPH2008

Pixel Shader Programming Model

A For imaging or GPGPU
A Millions of threads

A Each can only write
to 1 tos own

I No write contention

A No inter-thread
communication

A Pure data-parallel model

e _” SIGGRAPH2008

-

Compute Shader Programming

A 1000s of thread groups
A

Registers shareable
within each group

A Arbitrary access writes
to video memory

t _” SIGGRAPH2008

-

Memory Objects

A DXGI Resources

| Used for textures, images, vertices,

hulls, etc.

| Enables out-of-bounds memory checking

AReturns 0 on reads
A Writes are No-Ops

| Improves security, reliability of ship

AExposed as HLS
| Declared in the language as data o

ned code

. O Res ol

pjects

t " SIGGRAPH2008
-

Optimized I/O Intrinsics

A Textures & Buffers
I RWTexture2D, RWBuffer
I Act just like existing types

A Structured 1/O
I RWStructuredBuffer
| StructuredBuffer (read-only)

I Template type can be any struct definition

A Fast Structured 1/O
I AppendStructuredBuffer, ConsumeStructuredBuffer
I Work like streams

I Do not preserve ordering t " SIGGRAPH2008
-

Atomic Operator Intrinsics

Enable basic operations w/o lock/contention:
nterlockedAdd (rvar , val);
nterlockedMin (rvar , val);
nterlockedMax (rvar , val);
nterlockedOr (rvar, val)

nterlockedXOr (rvar , val);
nterlockedCompareWrite (rvar , val),

nterlockedCompareExchange (rvar , val);

2 sicerapr2oe
-

TextureCube

AAll 1-D, 2-D, 3-D and cube map resource
topologies

Texture Sampling

VA5 uv.auw
%ﬂnﬁ XTI
¢

X W
00000000074
YRR D

9,
Q AN 777

q
]
I
L
2
g
M
SIGGRAPH2008

-

Amray Index (fractions rounded)
<

Texture2DArray

Texture Sampling Operations

A All DirectX11 texture formats

I Including new compressed HDR format
| Sizes extended to 2GB, 16k x 16Kk,

A Standard HLSL sampling intrinsics
I Sample()
I Load()
| Gather()

t " SIGGRAPH2008
-

More DirectX11 Language Features

A SIMD-optimized method support

I Facilitates SIMD version of OOP

I Minimizes register utilization of method instances

| Enables combinatoric shaders to be specialized

A Arbitrari
A Optiona

I New d

y addressable writes in Pixel Shader

double precision

ouble and long types

t " SIGGRAPH2008
-

DirectX 11 Foundation

A Support for runtime compilation
I Very nice during prototyping and development

A Support for runtime data binding
| Conseqguence of above

A Compiler provided for off-line use as well

t " SIGGRAPH2008
-

Reduction Compute Code

Buffer< uint > Values;
OutputBuffer <uint> Result;

ImageAverage ()

{

groupshared uint Total; /l Total so far
groupshared uint Count; /[Count added
float3 vPixel =load(sampler, sv_ThreadlD);

float fLuminance =dot(vPixel ,LUM VECTOR);

uint value = fLuminance *65536;

InterlockedAdd (Count, 1);
InterlockedAdd (Total, value);

GroupMemoryBarrier (); /l Let all threads in group complete

f " SIGGRAPH2008
-

