

DirectX 11

Compute Shader

Chas. Boyd

Architect

Windows Desktop and Graphics Technology

Microsoft

Outline

ÅCompute Shader Objectives

ïDirectX

ïData-Parallel Processing

ïTarget Applications

ïDesign

ÅCompute Shader Details

ïSyntax and Features

DirectX

ÅDirectX API set shipping since 1995

ÅDirect3D is popular graphics API for PCs

ÅHistorically for games, but broadening in scope

ïWindows OS components, media apps, etc.

ÅGPU performance has grown at faster rate than

CPU graphic performance has

ÅNew customers want that performance

Data Parallel Processing

ÅA programming model and hardware

architecture

ÅAssign processor resources on a per-data-

element basis

ÅScales very well with core-count growth

ïApplications written in DirectX3 for 1 ALU still run

on 800 core processors

Introducing: the Compute Shader

ÅA new processing model for GPUs

ïDataïparallel programming for mass market client apps

ÅIntegrated with Direct3D

ïFor efficient inter-op with graphics in client scenarios

ÅSupports more general constructs than before

ïCross thread data sharing

ïUn-ordered access I/O operations

ÅEnables more general data structures

ïIrregular arrays, trees, etc.

ÅEnables more general algorithms

ïFar beyond shading

Target: Interactive Graphics/Games

ÅImage/Post processing:

ïImage Reduction, Histogram, Convolution, FFT

ÅEffect physics

ïParticles, smoke, water, cloth, etc.

ÅAdvanced renderers:

ïA-Buffer/OIT, Reyes, Ray-tracing, radiosity, etc.

ÅGameplay physics, AI, etc.

ÅProduction pipelines

Target: Media Processing

ÅVideo:

ïTranscode, superResolution, etc.

ÅPhoto/imaging:

ïConsumer applications

ÅNon-client scenarios:

ïHPC, server workloads, etc.

Optimized for Client Scenarios

ÅSimpler setup syntax

ïBalance between power and complexity

ÅReal-time rendering of results

ïWorking to reduce cost of transition from compute

mode to graphics mode

ÅBetter integration with media data types:

ïPixels, samples, text, vs only floats

ÅNeed consistency between implementations

ïBoth across vendors and over time/generations

Component Relationships

Accelerator, Brook+, Rapidmind, Ct

MKL, ACML, cuFFT, D3DX, etc.

Media playback or processing,

media UI, recognition, etc.

DirectX11 Compute, CUDA, CAL,

OpenCL, LRB Native, etc.

CPU, GPU, Larrabee

nVidia, Intel, AMD, S3, etc.

Applications

Processors

Compute Languages

Domain

Libraries

Domain

Languages

Compute Shader Features

ÅPredictable Thread Invocation

ïRegular arrays of threads: 1-D, 2-D, 3-D

ïDonôt have to ódraw a quadô anymore

ÅShared registers between threads

ïReduces register pressure

ïCan eliminate redundant compute and i/o

ÅScattered Writes

ïCan read/write arbitrary data structures

ïEnables new classes of algorithms

ïIntegrates with Direct3D resources

1

1

Integrated with Direct3D

ÅFully supports all Direct3D resources

ÅTargets graphics/media data types

ÅEvolution of DirectX HLSL

ÅGraphics pipeline updated to emit general

data structures via addressable writes

ÅWhich can then be manipulated by compute

shader

ÅAnd then rendered by Direct3D again

Scene Image

Integration with Graphics Pipeline

Input Assembler

Vertex Shader

Pixel Shader

Tessellation

Rasterizer

Output Merger

Geometry Shader

Compute
Shader

Data Structure

ÅRender scene

ÅWrite out scene image

ÅUse Compute for image

post-processing

ÅOutput final image

Final Image

Pixel Shader Programming Model

ÅFor imaging or GPGPU

ÅMillions of threads

ÅEach can only write

to itôs own destination

ïNo write contention

ÅNo inter-thread

communication

ÅPure data-parallel model

Compute Shader Programming

Å1000s of thread groups

ÅRegisters shareable

within each group

ÅArbitrary access writes

to video memory

Memory Objects

ÅDXGI Resources

ïUsed for textures, images, vertices, hulls, etc.

ïEnables out-of-bounds memory checking

ÅReturns 0 on reads

ÅWrites are No-Ops

ïImproves security, reliability of shipped code

ÅExposed as HLSL óResource Variablesô

ïDeclared in the language as data objects

Optimized I/O Intrinsics

ÅTextures & Buffers

ïRWTexture2D, RWBuffer

ïAct just like existing types

ÅStructured I/O

ïRWStructuredBuffer

ïStructuredBuffer (read-only)

ïTemplate type can be any struct definition

ÅFast Structured I/O

ïAppendStructuredBuffer, ConsumeStructuredBuffer

ïWork like streams

ïDo not preserve ordering

Atomic Operator Intrinsics

Enable basic operations w/o lock/contention:

InterlockedAdd (rVar , val);

InterlockedMin (rVar , val);

InterlockedMax (rVar , val);

InterlockedOr (rVar , val);

InterlockedXOr (rVar , val);

InterlockedCompareWrite (rVar , val);

InterlockedCompareExchange (rVar , val);

Texture Sampling

ÅAll 1-D, 2-D, 3-D and cube map resource

topologies

Texture Sampling Operations

ÅAll DirectX11 texture formats

ïIncluding new compressed HDR format

ïSizes extended to 2GB, 16k x 16k,

ÅStandard HLSL sampling intrinsics

ïSample()

ïLoad()

ïGather()

More DirectX11 Language Features

ÅSIMD-optimized method support

ïFacilitates SIMD version of OOP

ïMinimizes register utilization of method instances

ïEnables combinatoric shaders to be specialized

ÅArbitrarily addressable writes in Pixel Shader

ÅOptional double precision

ïNew double and long types

DirectX 11 Foundation

ÅSupport for runtime compilation

ïVery nice during prototyping and development

ÅSupport for runtime data binding

ïConsequence of above

ÅCompiler provided for off-line use as well

Reduction Compute Code

Buffer< uint > Values;

OutputBuffer <uint> Result;

ImageAverage ()

{

groupshared uint Total; // Total so far

groupshared uint Count; // Count added

float3 vPixel = load(sampler, sv_ThreadID);

float fLuminance = dot(vPixel , LUM_VECTOR);

uint value = fLuminance *65536;

InterlockedAdd (Count, 1);

InterlockedAdd (Total, value);

GroupMemoryBarrier (); // Let all threads in group complete

