
Beyond Programmable Shading: Fundamentals

Larrabee:
Software is the New Hardware

Tom Forsyth

Intel Corporation

Beyond Programmable Shading: Fundamentals 2

Coming upé

ÅHardware intro

ðFrighteningly brief

ðFor more details please refer to the paper
òLarrabee: A Many-Core x86 Architecture for Visual Computingó

ÅImplementation of the existing pipeline

ðWhy software rendering works

ÅGoing beyond the pipeline

ðIt can do anything, but what sort of anything?

Beyond Programmable Shading: Fundamentals

HARDWARE INTRODUCTION

A whirlwind -fasté

3

Beyond Programmable Shading: Fundamentals

Hardware intro

ÅWhat a C coder needs to know

ðNo time for a full architecture discussion

ðDoesnõt go into details that can be hidden by a

compiler ðscheduling, instruction set, etc

ÅArchitecture is very compiler -friendly

ðVery few special -cases

ðCompiler and instruction set designed concurrently

ÅOften by the same people

ðGood intrinsic support

ðC->assembly conversion is straightforwards

ðSo no need to actually write assembly ðyay!

4

Beyond Programmable Shading: Fundamentals

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

Multi -
Threaded

Wide SIMD

Multi -
Threaded

Wide SIMD

Multi -
Threaded

Wide SIMD

Multi -
Threaded

Wide SIMD

DIDI

DI

F
ix

e
d

 F
u

n
c

ti
o

n
T
e

x
tu

re
 L

o
g

ic

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

D
is

p
la

y
 I

n
te

rf
a
c
e

S
y
s
te

m
 I

n
te

rf
a
c
e

DI

x86 + SIMD

DI

x86 + SIMD

DI

x86 + SIMD

DI

x86 + SIMD

L2 Cache

. . .

. . .

Hardware intro

ÅLots of real x86 cores

ÅEach has a 16-wide SIMD unit

ÅFully coherent cache hierarchy

ÅFixed -function texture units

Beyond Programmable Shading: Fundamentals

Top-level structure

ÅLots of x86 cores

ð16-float -wide SIMD instruction set

ðEach with fully -coherent L1 and L2 caches

ÅTexture sampler units

ðFull DirectX/OpenGL functionality

ðHave their own semi-coherent caches

ðSame virtual memory space as the cores

ÅFull x86 protected virtual memory

ðImplement Posix threads, pre -emption, ring 0 -3, etc

ÅA fast bidirectional ring

ðL2 caches can share data with each other
6

Beyond Programmable Shading: Fundamentals

x86 cores

ÅDerived from Pentium 1

ðPlus standard 64-bit instruction extensions

ÅShort in -order pipeline

ðIn-order doesnõt mean slow

ðDual-issue ðsimilar pairing rules to Pentium

ðNo latency on scalar ops, low latency on vector ops

ðCheap mispredicted branches and cache misses

Å4-way SMT

ðSwitches thread on every clock

ðDesigned to hide L1 cache misses

ðAlso helps hide vector instruction latency
7

Beyond Programmable Shading: Fundamentals

SIMD pipeline

Å16-wide float32/int32, 8 -wide float64

ðLarge number of 512-bit registers

ðTernary, multiply -add, one clock throughput

ðOne source can come from memory for free

ðMost instructions have <<8-clock latency

ÅFree predication on every instruction

ð16-bit predication registers ðone òenableó per lane

ÅFast IEEE754

ðBit-perfect match with existing òfast modeó SSE

ðFull IEEE754 available

8

Beyond Programmable Shading: Fundamentals

SIMD pipeline conté

ÅAll math done in float32/int32/float64

ðNearly-free conversion to and from common formats

Åfloat16, int8, int16, norm8, norm16

ðCheap conversion to and from other graphics formats

ÅsRGB, float11:11:10, unorm10:10:10:2

ÅGather/scatter instructions

ðReads/writes 16 results to/from 16 different offsets

ðWith predication, allows òdataflowó processing

ÅTake scalar code without aliasing, auto -SIMDise

ÅIncluding loops, conditionals, calls, stacks, etc

ÅMaps to shader-style languages really well

9

Beyond Programmable Shading: Fundamentals

Caches

ÅEach core has its own pair of caches

ð32kbyte L1(data), 256kbyte L2

ÅAll fully coherent with each other

ðL2s can share data with each other

ðCores can co-operate on data quickly

ÅLots of explicit cache controls

ðControls for ònon-temporaló streaming data

ðPrefetch, evict, make -LRU, initialize instructions

ðAutonomous unit can do large blocks of prefetches

ðCombines the fine control of a scratchpad with the

òsoft edgesó of a cache
10

Beyond Programmable Shading: Fundamentals

4-way Simultaneous Multi Threading

ÅEach core has 4 hardware threads

ðEach thread is a full separate x86 context

ÅOne thread picked to execute per clock

ðCalled òSMTó or òCMTó or òHyperThreadingó

ðOnly picks threads that are awake

ÅMain purpose is to handle cache misses

ðThreads that miss the cache are put to sleep

ðAwake threads also help absorb instruction latency

ÅShared L1, L2, TLB, etc

ðGood idea to have all threads working on same task

ðVery fast communications between those threads
11

Beyond Programmable Shading: Fundamentals

Texture Sampler Units

ÅStill much faster than software (~20x)

ðFull-spec DX/OGL sampler units

ðSupports all standard formats, anisotropy, etc

ðRequests sent by core as 4x4 blocks of UV coords

ðReturns sampled & filtered RGBA results

ÅSame virtual memory space as cores

ðHas TLBs, page walker, uses same page tables

ðPage faults can be òsoftó or òhardó (more lateré)

ÅAccess is through wafer -thin APIs

ðAll calls will be inlined

ðAPI handles fiddly bit -twiddling
12

Beyond Programmable Shading: Fundamentals

SOFTWARE RENDERING

A hopefully convincing introduction toé

13

